Bilayer graphene dual-gate nanodevice: Anab initiosimulation
نویسندگان
چکیده
منابع مشابه
Single-gate bandgap opening of bilayer graphene by dual molecular doping.
Dual doping-driven perpendicular electric field with opposite directions remarkably increase the on/off current ratio of bilayer graphene field-effect transistors. This unambiguously proves that it is possible to open a bandgap with two molecular dopants (F4-TCNQ and NH2 -functionalized self-assembled monolayers (SAMs)) even in a single-gate device structure.
متن کاملPhotothermal response in dual-gated bilayer graphene.
The photovoltaic and bolometric photoresponse in gapped bilayer graphene was investigated by optical and transport measurements. A pulse coincidence technique at 1.5 μm was used to measure the response times as a function of temperature. The bolometric and photovoltaic response times were found to be identical implying that the photovoltaic response is also governed by hot electron thermal rela...
متن کاملGate-defined quantum confinement in suspended bilayer graphene.
Quantum-confined devices that manipulate single electrons in graphene are emerging as attractive candidates for nanoelectronics applications. Previous experiments have employed etched graphene nanostructures, but edge and substrate disorder severely limit device functionality. Here we present a technique that builds quantum-confined structures in suspended bilayer graphene with tunnel barriers ...
متن کاملGate-tunable resonant tunneling in double bilayer graphene heterostructures.
We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potenti...
متن کاملGate tunable infrared phonon anomalies in bilayer graphene.
We observe a giant increase of the infrared intensity and a softening of the in-plane antisymmetric phonon mode E(u) ( approximately 0.2 eV) in bilayer graphene as a function of the gate-induced doping. The phonon peak has a pronounced Fano-like asymmetry. We suggest that the intensity growth and the softening originate from the coupling of the phonon mode to the narrow electronic transition be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2011
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.84.113412